

Published on Web 02/21/2003

Coordination of Alkenes and Alkynes to a Cationic d⁰ Zirconocene Alkoxide Complex

Edward J. Stoebenau, III and Richard F. Jordan*

Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Received December 30, 2002; E-mail: rfjordan@uchicago.edu

Zirconium(IV) alkene and alkyne complexes, $(C_5R_5)_2Zr(R)$ -(substrate)⁺, are probable key intermediates in zirconocenecatalyzed alkene polymerization¹ and alkyne oligomerization,² but little is known about their structures and properties. These species may exhibit unusual features due to the absence of $d-\pi^*$ backbonding. Several d⁰ group 5 and 6 metal alkene³ and alkyne⁴ complexes have been observed by NMR, and *chelated* d⁰ group 3 and 4 metal alkene⁵ and alkyne^{2,6} complexes have been studied.⁷ In particular, X-ray and NMR studies of chelated (C5R5)2Zr(OCMe2- $CH_2CH_2CH=CH_2)^+$ complexes show that the alkene binds to Zr(IV) unsymmetrically (d(Zr-C_{term}) < d(Zr-C_{int})) and suggest that the C=C bond is polarized with positive charge on C_{int}.^{5a,b} However, it is not yet clear how the properties of these species are influenced by the chelation, and therefore nonchelated analogues are highly desirable. Here we report the synthesis of base-free $(C_5R_5)_2$ Zr $(O^tBu)^+$ cations, the observation of *nonchelated* alkene and alkyne adducts of these cations, and studies of the thermodynamic and dynamic properties of these novel species.

The alkoxide complex $[Cp'_2Zr(O'Bu)][B(C_6F_5)_4]$ (1, $Cp' = C_5H_4Me$) was synthesized in a one-pot procedure (eq 1). Reaction of Cp'_2ZrMe_2 with *tert*-butyl alcohol followed by $[Ph_3C]$ - $[B(C_6F_5)_4]$ in benzene cleanly yields 1. The Ph₃CMe byproduct can be removed by washing with benzene and hexanes to afford 1 as a bright yellow solid (80%). The analogous complex $[Cp_2Zr(O'Bu)][B(C_6F_5)_4]$ (2) was generated in a similar manner.

Compound 1 is soluble in halocarbon solvents, forms an oil in benzene or toluene, and is insoluble in alkanes. The ¹H and 13 C NMR spectra of 1 in C₆D₅Cl at 23 and -35 °C, and in CD₂Cl₂ at -89 °C, contain two CH resonances for the Cp' rings indicative of a C_{2v} -symmetric cation. These data are consistent with either a dinuclear $[Cp'_2Zr(\mu-O^tBu)]_2^{2+}$ dication⁸ or a labile mononuclear ion pair or solvent adduct with fast site epimerization at Zr. The ¹H NMR spectrum of a 1:1 mixture of Cp₂/Zr(O^tBu)Me and Cp2Zr(O'Bu)Me after treatment with 2 equiv of [Ph3C]- $[B(C_6F_5)_4]$ in C_6D_5Cl exhibits sharp resonances for 1 and 2 but no resonances or line broadening effects indicative of a mixed $[Cp'_2Zr(\mu-O'Bu)_2ZrCp_2]^{2+}$ dimer. The ¹⁹F NMR spectra of 1 show no evidence of anion coordination down to -89 °C.9 Additionally, ethylene coordination to 1 in CD₂Cl₂ is influenced by C₆H₅Cl but not by [Ph₃C][B(C₆F₅)₄] (vide infra). These results strongly suggest that 1 forms Cp'₂Zr(O^tBu)(ClR)⁺ adducts in chlorocarbon solutions.10

Addition of ethylene to a CD_2Cl_2 solution of 1 at -89 °C affords an equilibrium mixture of 1, free ethylene, and the ethylene complex

Tabla 1	Equilibrium	Constants	for Eo	2 for	Salactad	Ligandea
i apie 1.	Equilibrium	Constants	TOT EQ	2 101	Selected	Ligands ^a

L	<i>K</i> _{eq} (−89 °C, M ^{−1})	L	<i>К</i> _{еq} (−89 °С, М ^{−1})
CO	>1500	allene	6.7(3)
propyne (5)	360(70)	propylene (4)	5.4(2)
2-butyne (6)	52(3)	1-hexene	4.8(8)
phenylacetylene	22(1)	<i>cis</i> -2-butene	2.2(1)
ethylene (3)	7.0(6)	vinyl chloride	<0.1

 $^{a} K_{eq} = [Zr-L][1]^{-1}[L]^{-1}.$

Table 2. Thermodynamic Data for Equilibria in Eq 2 and Activation Parameters for Decomplexation (k_{-1}) of L from Adducts **3**-6

adduct	∆ <i>H</i> ° (kcal/mol)	ΔS° (eu)	∆ <i>H</i> [‡] (kcal/mol)	∆ <i>S</i> ‡ (eu)	$\Delta {\it G}^{\ddagger}$ (kcal/mol) a
3	-3.6(1)	-16(4)	7.7(5)	-15(2)	11.1(1)
4	-3.8(2)	-17(1)	8.1(9)	-12(4)	11.0(1)
5	-4.1(3)	-11(1)	8.5(3)	-14(1)	11.8(1)
6	-3.6(3)	-11(1)	13.8(5)	4(2)	12.9(1)

^{*a*} At −39 °C.

 $[Cp'_2Zr(O'Bu)(C_2H_4)][B(C_6F_5)_4]$ (3, eq 2). The ¹³C NMR spectrum of 3 contains four Cp' CH resonances, consistent with C_s symmetry. The ¹H and ¹³C NMR spectra each contain one coordinated ethylene resonance indicative of fast ethylene rotation. The ethylene ¹H resonance (δ 5.92) is shifted 0.56 ppm downfield, and the ¹³C resonance (δ 119.0) is shifted 3.8 ppm upfield from the free ethylene resonances. The ¹J_{CH} value for ethylene is virtually unchanged upon coordination.

Taking the concentration of CD_2Cl_2 to be constant, we define the equilibrium constant for ethylene coordination in eq 2 by K_{eq} = [3][1]⁻¹[C₂H₄]⁻¹ = 7.0(6) M⁻¹ (-89 °C, Table 1). This value is unaffected by changing the initial concentrations of 1 (0.038– 0.080 M) or ethylene (0.13–0.29 M) or by addition of [Ph₃C][B(C₆F₅)₄] as an excess anion source. However, addition of 30 equiv of C₆H₅Cl shifts the equilibrium to the left, possibly due to C₆H₅Cl coordination.^{10b} Raising the temperature also shifts the equilibrium to the left. A van't Hoff plot gives $\Delta H^{\circ} = -3.6(1)$ kcal/mol and $\Delta S^{\circ} = -16(4)$ eu for substitution of CD₂Cl₂ by ethylene (Table 2).¹¹

The NMR resonances for 1, 3, and free ethylene broaden and coalesce as the temperature is raised from -89 °C, consistent with

the exchange of **1** and **3** and of free and coordinated ethylene. The line widths for **3** are independent of the free ethylene concentration, which implies that coordinated ethylene is not directly displaced by free ethylene. Analysis of VT NMR spectra provides first-order rate constants (k_{-1}) and activation parameters (Table 2) for ethylene decomplexation. The negative ΔS^{\ddagger} value suggests that CD₂Cl₂ displaces the coordinated ethylene in an associative mechanism.¹²

Addition of propylene to 1 results in partial conversion to the propylene adduct $[Cp'_{2}Zr(O'Bu)(H_{2}C=CHMe)][B(C_{6}F_{5})_{4}]$ (4, eq 2). The ¹³C NMR spectrum of 4 contains eight Cp' CH and two Cp' Me resonances, consistent with C_1 symmetry. The ¹H NMR H_{int} resonance of the coordinated propylene (δ 7.34) is shifted far downfield from the free propylene resonance (δ 5.79). The propylene ¹³C C_{int} resonance (δ 153.5) is shifted 19.6 ppm downfield, and the C_{term} resonance (δ 102.6) is shifted 12.4 ppm upfield by coordination. The propylene $J_{\rm HH}$ and $J_{\rm CH}$ values are virtually unchanged by coordination. These data are very similar to the data for chelated $(C_5R_5)_2Zr(OCMe_2CH_2CH_2CH_2CH_2)^+$ olefin complexes, which suggests that the propylene ligand in 4 is bound unsymmetrically and is polarized in the same manner as proposed for the chelated complexes.^{5a,b} VT NMR studies show that propylene and ethylene bind with similar strength to 1 and that the barrier to propylene decomplexation is nearly identical to that for ethylene decomplexation from 3 (Tables 1, 2).

Similarly, addition of propyne to **1** yields an equilibrium mixture of **1**, free propyne, and $[Cp'_2Zr(O'Bu)(HC=CMe)][B(C_6F_5)_4]$ (**5**, eq 2). The ¹H and ¹³C NMR spectra of **5** contain four Cp' CH resonances, consistent with C_s symmetry. The propyne ¹³C C_{int} resonance (δ 89.1) is shifted 8.9 ppm downfield, and the C_{term} resonance (δ 64.2) is shifted 2.8 ppm upfield upon coordination. These results suggest that the coordinated propyne is unsymmetrically bound and polarized in a similar manner as the propylene of **4**.

The C_s -symmetric 2-butyne adduct [Cp'₂Zr(O'Bu)(MeC=CMe)]- $[B(C_6F_5)_4]$ (6, eq 2) is generated by addition of 2-butyne to 1. At -89 °C, the ¹H and ¹³C NMR spectra of 6 each contain one 2-butyne CMe resonance, which is broadened due to restricted rotation of the in-plane-bound 2-butyne ligand. These resonances sharpen as the temperature is raised to -59 °C due to 2-butyne rotation, and then broaden and coalesce with the free 2-butyne \equiv *CMe* resonances at higher temperatures due to the exchange in eq 2. VT NMR studies show that 2-butyne binds more weakly than propyne, but the barrier to 2-butyne decomplexation is higher than that for propyne decomplexation. These results, and the more positive ΔS^{\dagger} value for 2-butyne decomplexation from 6, are suggestive of a greater degree of dissociative character in the substitution of 2-butyne by CD₂Cl₂ vis-à-vis ligand decomplexation of 3-5. Significant steric crowding is expected in the transition state for associative CD₂Cl₂ displacement of 2-butyne.

Compound 1 forms adducts with a wide variety of other ligands, and equilibrium constants for eq 2 for selected cases are summarized in Table 1. Certain trends can be noted. First, CO binds quite strongly, and NMR studies show that free CO directly displaces coordinated CO.¹³ Second, alkynes coordinate more strongly than alkenes of similar structure, but steric crowding can strongly inhibit alkyne binding. Third, ethylene and α -olefins bind with similar strength, which suggests that electronic and steric effects cancel for this series, because α -olefins are expected to be stronger σ -donors on the basis of their higher HOMO energies.¹⁴ The disubstituted olefin *cis*-2-butene binds weakly. Vinyl chloride binds very weakly, and the coordination mode (via C=C vs CI) is not yet established; in this case, the only evidence for coordination is line broadening of the vinyl chloride ¹³C NMR signals in the presence of **1**. Finally, *tert*-butylacetylene, *trans*-2-butene, benzene, N_2 , H_2 , and, interestingly, 1,3-butadiene do not displace CD_2Cl_2 from **1**.

The $[Cp'_2Zr(O'Bu)][B(C_6F_5)_4]$ system enables, for the first time, direct study of alkene and alkyne coordination to a cationic Zr(IV) center in the absence of chelation. The $Cp'_2Zr(O'Bu)(alkene)^+$ complexes are models for $(C_5R_5)_2ZrR(alkene)^+$ species in zirconocene-catalyzed alkene polymerizations.¹ The use of an alkoxide instead of an alkyl ligand is expected to decrease the metal Lewis acidity, so alkene binding in $Cp'_2Zr(O'Bu)(alkene)^+$ may be weaker than in $Cp'_2ZrR(alkene)^+$ species.^{5a} Future studies of alkene coordination to a broader set of $(C_5R_5)_2Zr(O'Bu)^+$ complexes will enable us to probe how the $(C_5R_5)_2Zr(O'Bu)^+$ complexes will ordination, and may provide new insights to the factors which underlie structure/reactivity trends in zirconocene-catalyzed alkene polymerization.

Acknowledgment. We thank the NSF (CHE-0212210) for financial support, and Frank Schaper for helpful discussions.

Supporting Information Available: Experimental procedures, data for new compounds, and VT NMR spectra (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (b) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253.
- (2) Horton, A. D. Chem. Commun. 1992, 185.
- (3) (a) Humphries, M. J.; Douthwaite, R. E.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 2000, 2952. (b) Witte, P. T.; Meetsma, A.; Hessen, B.; Budzelaar, P. H. M. J. Am. Chem. Soc. 1997, 119, 10561. (c) Kress, J.; Osborn, J. A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1585.
- (4) Curtis, M. A.; Finn, M. G.; Grimes, R. N. J. Organomet. Chem. 1998, 550, 469.
- (5) (a) Carpentier, J.-F.; Wu, Z.; Lee, C. W.; Strömberg, S.; Christopher, J. N.; Jordan, R. F. J. Am. Chem. Soc. 2000, 122, 7750. (b) Wu, Z.; Jordan, R. F.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 5867. (c) Carpentier, J.-F.; Maryin, V. P.; Luci, J.; Jordan, R. F. J. Am. Chem. Soc. 2001, 123, 898. (d) Galakhov, M. V.; Heinz, G.; Royo, P. Chem. Commun. 1998, 17. (e) Brandow, C. G.; Mendiratta, A.; Bercaw, J. E. Organometallics 2001, 20, 4253. (f) Casey, C. P.; Carpenetti, D. W., II; Sakurai, H. Organometallics 2001, 20, 4262 and references therein. (g) Casey, C. P.; Klein, J. F.; Fagan, M. A. J. Am. Chem. Soc. 2000, 122, 4320 and references therein.
- (6) Temme, B.; Erker, G.; Fröhlich, R.; Grehl, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1480.
- (7) The existence of an yttrium-propylene adduct has been deduced from NMR line broadening effects. Casey, C. P.; Lee, T.-Y.; Tunge, J. A.; Carpenetti, D. W., II. J. Am. Chem. Soc. 2001, 123, 10762.
- (8) Martin, A.; Uhrhammer, R.; Gardner, T. G.; Jordan, R. F.; Rogers, R. D. Organometallics 1998, 17, 382.
- (9) (a) Horton, A. D.; Orpen, A. G. Organometallics 1991, 10, 3910. (b) Goodman, J. T.; Schrock, R. R. Organometallics 2001, 20, 5205.
- (10) (a) A base free Cp'2Zr(O'Bu)⁺ cation is very unlikely in RCl solution. (b) The related chlorobenzene adducts [Cp₂Zr(CH₂Ph)(ClPh)][B(C₆F₅)₄] and [(C₅Me₅)₂ZrCl(ClPh)][B(C₆F₅)₄] have been crystallographically characterized. Wu, F.; Jordan, R. F., unpublished results.
- (11) If the solvent term is included, the equilibrium constant for eq 2 is $K'_{eq} = K_{eq}[CD_2Cl_2]$, where K_{eq} is defined as in the text. If the solvent concentration is assumed to be independent of temperature, the value of ΔH° is not affected, but the entropy term becomes $\Delta S^{\circ'} = \Delta S^{\circ} + R(\ln[CD_2-Cl_2])$, where $R(\ln[CD_2Cl_2]) \approx 5.5$ eu.
- (12) For associative ligand substitution of Cp₂Zr(X)(L)⁺ species, see: (a) Schaper, F.; Geyer, A.; Brintzinger, H. H. Organometallics 2002, 21, 473.
 (b) Collins, S.; Koene, B. E.; Ramachandran, R.; Taylor, N. J. Organometallics 1991, 10, 2092.
- (13) For other examples of cationic Zr(IV) CO complexes, see: Guo, Z.; Swenson, D. C.; Guram, A. S.; Jordan, R. F. Organometallics 1994, 13, 766 and references therein.
- (14) von Schenck, H.; Strömberg, S.; Zetterberg, K.; Ludwig, M.; Åkermark, B.; Svensson, M. Organometallics 2001, 20, 2813.

JA029963J